*完成訂單後正常情形下約兩周可抵台。 *本賣場提供之資訊僅供參考,以到貨標的為正確資訊。 印行年月:202308*若逾兩年請先於私訊洽詢存貨情況,謝謝。 台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。 書名:高等數學 ISBN:9787030761859 出版社:科學 著編譯者:霍桂利 頁數:320 所在地:中國大陸 *此為代購商品 書號:1563552 可大量預訂,請先連絡。 內容簡介 本書根據高等職業教育人才培養目標並結合職業本科學生實際學習需求編寫,按照高等職業教學中公共基礎課服務於專業、應用於實際的基本要求,在內容編排上盡量完整呈現基本知識體系,同時儘可能體現數學的應用。全書分上、下兩冊,下冊共七章,內容包括向量代數與空間解析幾何、多元函數微分法及其應用、重積分、曲線積分和曲面積分、無窮級數、數學建模、MATLAB軟體基本應用等,每章章末以二維碼形式鏈接本章提要和習題答案。習題按照難度分層設置,分為基礎題和提高題。 本書可作為職業本科院校工科等各專業的高等數學課程的教材,也可供自學人員、科技工作者參考。目錄 前言第7章 向量代數與空間解析幾何 7 1 向量及其線性運算 7 1 1 空間直角坐標系 7 1 2 向量的概念 7 1 3 向量的線性運算 7 1 4 利用坐標作向量的線性運算 7 1 5 向量的模、方向角、投影 習題7 1 7 2 數量積與向量積*、混合積 7 2 1 向量的數量積 7 2 2 向量的向量積 7 2 3 混合積 習題7 2 7 3 曲面及其方程 7 3 1 曲面方程的概念 7 3 2 旋轉曲面 7 3 3 柱面 7 3 4 二次曲面 習題7 3 7 4 空間曲線及其方程 7 4 1 空間曲線的一般方程 7 4 2 空間曲線的參數方程 7 4 3 空間曲線在坐標面上的投影 習題7 4 7 5 平面及其方程 7 5 1 平面的點法式方程 7 5 2 平面的一般方程 7 5 3 兩平面的夾角 習題7 5 7 6 直線及其方程 7 6 1 空間直線的一般方程 7 6 2 空間直線的對稱式方程與參數方程 7 6 3 兩直線的夾角 7 6 4 直線與平面的夾角 習題7 6 複習題7 第8章 多元函數微分法及其應用 8 1 多元函數的基本概念 8 1 1 平面點集的基本概念 8 1 2 多元函數的概念 8 1 3 多元函數的極限 8 1 4 多元函數的連續性 習題8 1 8 2 偏導數 8 2 1 偏導數的概念 8 2 2 高階偏導數 習題8 2 8 3 全微分 8 3 1 全微分的概念 8 3 2 全微分在近似計算中的應用 習題8 3 8 4 複合函數微分法 8 4 1 多元複合函數的求導法則 8 4 2 多元複合函數的全微分 習題8 4 8 5 隱函數的微分法 8 5 1 一個方程確定隱函數的情形 8 5 2 方程組的情形 習題8 5 8 6 多元函數微分學的幾何應用 8 6 1 空間曲線的切線與法平面 8 6 2 空間曲面的切平面與法線 習題8 6 8 7 方嚮導數與梯度 8 7 1 方嚮導數 8 7 2 梯度 習題8 7 8 8 多元函數的極值與最值 8 8 1 多元函數的極值 8 8 2 多元函數的最值 8 8 3 條件極值 習題8 8 複習題8 第9章 重積分 9 1 二重積分 9 1 1 二重積分的概念 9 1 2 二重積分的性質 習題9 1 9 2 二重積分的計算 9 2 1 利用直角坐標計算二重積分 9 2 2 交換二次積分次序 9 2 3 利用對稱性和奇偶性化簡二重積分的計算 9 2 4 利用極坐標計算二重積分 習題9 2 9 3 三重積分 9 3 1 三重積分的概念 9 3 2 三重積分的計算 習題9 3 9 4 重積分的應用 9 4 1 重積分在幾何中的應用 9 4 2 重積分在物理中的應用 習題9 4 複習題9 第10章 曲線積分和曲面積分 10 1 對弧長的曲線積分 10 1 1 對弧長的曲線積分的概念與性質 10 1 2 對弧長的曲線積分的計算及應用 習題10 1 10 2 對坐標的曲線積分 10 2 1 對坐標的曲線積分的概念與性質 10 2 2 對坐標的曲線積分的計算及應用 10 2 3 兩類曲線積分之間的聯繫 習題10 2 10 3 格林公式及其應用 10 3 1 格林公式 10 3 2 平面上曲線積分與路徑無關的條件 10 3 3 二元函數的全微分求積 習題10 3 10 4 對面積的曲面積分 10 4 1 對面積的曲面積分的概念與性質 10 4 2 對面積的曲面積分的計算 習題10 4 10 5 對坐標的曲面積分 10 5 1 有向曲面及其投影 10 5 2 對坐標的曲面積分的概念與性質 10 5 3 對坐標的曲面積分的計算 10 5 4 兩類曲面積分之間的聯繫 習題10 5 10 6 高斯公式、通量與散度 10 6 1 高斯公式 10 6 2 沿任意閉曲面的曲面積分為零的條件 10 6 3 通量與散度 習題10 6 10 7 斯托克斯公式、環流量與旋度 10 7 1 斯托克斯公式 10 7 2 環流量與旋度 習題10 7 複習題10 第11章 無窮級數 11 1 常數項級數的概念與性質 11 1 1 基本概念 11 1 2 數項級數的基本性質 習題11 1 11 2 常數項級數的審斂法 11 2 1 正項級數審斂法 11 2 2 交錯級數的審斂法 11 2 3 任意項級數斂散性的判定 習題11 2 11 3 冪級數 11 3 1 函數項級數的概念 11 3 2 冪級數及其收斂性 習題11 3 11 4 函數展開成冪級數 11 4 1 泰勒級數 11 4 2 函數展開為冪級數 習題11 4 11 5 冪級數的應用 11 5 1 求極限 11 5 2 近似計算 *11 5 3 歐拉公式 習題11 5 11 6 傅里葉級數 11 6 1 三角級數 11 6 2 三角函數系及其正交性 11 6 3 周期為2π的函數展開為傅里葉級數 習題11 6 11 7 正弦函數與餘弦函數 11 7 1 奇函數與偶函數的傅里葉級數 11 7 2 周期 詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。 |