組合學 (第二版) (英文) (美)尼古拉斯.A洛爾 9787576706215 【台灣高等教育出版社】

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:哈爾濱工業大學
NT$623
商品編號:
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202301*若逾兩年請先於私訊洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:組合學 (第二版) (英文)
ISBN:9787576706215
出版社:哈爾濱工業大學
著編譯者:(美)尼古拉斯.A洛爾
叢書名:格致方法.定量研究系列
頁數:627
所在地:中國大陸 *此為代購商品
書號:1575841
可大量預訂,請先連絡。

內容簡介 本書的第一部分涵蓋了基本的計數工具,包括和與乘積的規則、二項式係數、遞歸、組合恆等式的雙射證明、圖論中的枚舉問題、包含一排除公式、生成函數、評秩演算法和後繼演算法。閱讀這部分內容需要的數學先決條件最少,可用於本科高年級或研究生初級階段的一個學期的組合學課程。這些材料對計算機科學家、統計學家、工程師、物理學家以及數學家來說都是有趣且有用的。 本書的第二部分包含了對代數組合學的介紹,討論了群、群作用、排列統計、表格、對稱多項式和形式冪級數。這裏對對稱多項式的表述比標準參考文獻[84]更具有組合性(希望更易於讀者理解)。特別是一種基於反對稱多項式和算盤的新方法對一些高級結果給出了基本組合證明,例如倍增的舒爾(Schur)對稱多項式的皮耶里(Pieri)規則和利特爾伍德一理查森(Littlewood-Richardson)規則。第二部分假設讀者擁有更多、更複雜的數學知識(主要是線性代數的一些知識),可用於研究生在數學和相關領域的一個學期的課程中。關於抽象代數和線性代數的一些相關背景材料在附錄中進行了回顧。最後一章由關於可選主題的獨立部分組成,補充了正文中的材料。在許多章節中,章節的後面部分中的一些較難的材料可以省略,不會使閱讀失去連續性。

目錄 Preface to the Second Edition
Introduction
I Counting
1 Basic Counting
1 1 The Product Rule
1 2 The Sum Rule
1 3 Counting Words and Permutations
1 4 Counting Subsets
1 5 Counting Anagrams
1 6 Counting Rules for Set Operations
1 7 Probability
1 8 Lotteries and Card Games
1 9 Conditional Probability and Independence
1 10 Counting Functions
1 11 Cardinality and the Bijection Rule
1 12 Counting Multisets and Compositions
1 13 Counting Balls in Boxes
1 14 Counting Lattice Paths
1 15 Proofs of the Sum Rule and the Product Rule
Summary
Exercises
2 Combinatorial Identities and Recursions
2 1 Initial Examples of Combinatorial Proofs
2 2 The Geometric Series Formula
2 3 The Binomial Theorem
2 4 The Multinomial Theorem
2 5 More Binomial Coefficient Identities
2 6 Sums of Powers of Integers
2 7 Recursions
2 8 Recursions for Multisets and Anagrams
2 9 Recursions for Lattice Paths
2 10 Catalan Recursions
2 11 Integer Partitions
2 12 Set Partitions
2 13 Surjections, Balls in Boxes, and Equivalence Relations
2 14 Stirling Numbers and Rook Theory
2 15 Stirling Numbers and Polynomials
2 16 Solving Recursions with Constant Coefficients
Summary
Exercises
3 Counting Problems in Graph Theory
3 1 Graphs and Digraphs
3 2 Walks and Matrices
3 3 Directed Acyclic Graphs and Nilpotent Matrices
3 4 Vertex Degrees
3 5 Functional Digraphs
3 6 Cycle Structure of Permutations
3 7 Counting Rooted Trees
3 8 Connectedness and Components
3 9 Forests
3 10 Trees
3 11 Counting Trees
3 12 Pruning Maps
3 13 Bipartite Graphs
3 14 Matchings and Vertex Covers
3 15 Two Matching Theorems
3 16 Graph Coloring
3 17 Spanning Trees
3 18 The Matrix-Tree Theorem
3 19 Eulerian Tours
Summary
Exercises
4 Inclusion-Exclusion, Involutions, and M6bius Inversion
4 1 The Inclusion-Exclusion Formula
4 2 Examples of the Inclusion-Exclusion Formula
4 3 Surjections and Stirling Numbers
4 4 Euler's φ Function
4 5 Derangements
4 6 Involutions
4 7 Involutions Related to Inclusion-Exclusion
4 8 Generalized Inclusion-Exclusion Formulas
4 9 MSbius Inversion in Number Theory
4 10 Partially Ordered Sets
4 11 M6bius Inversion for Posets
4 12 Product Posers
Summary
Exercises
5 Generating Functions
5 1 What is a Generating Function?
5 2 Convergence of Power Series
5 3 Examples of Analytic Power Series
5 4 Operations on Power Series
5 5 Solving Recursions with Generating Functions
5 6 Evaluating Summations with Generating Functions
5 7 Generating Function for Derangements
5 8 Counting Rules for Weighted Sets
5 9 Examples Of the Product Rule for Weighted Sets
5 10 Generating Functions for Trees
5 11 Tree Bijections
5 12 Exponential Generating Functions
5 13 Stirling Numbers of the First Kind
5 14 Stirling Numbers of the Second Kind
5 15 Generating Functions for Integer Partitions
5 16 Partition Bijections
5 17 Euler's Pentagonal Number Theorem
Summary
Exercises
6 Ranking, Unranking, and Successor Algorithms
6 1 Introduction to Ranking and Successor Algorithms
6 2 The Bijective Sum Rule
6 3 The Bijective Product Rule for Two Sets
6 4 The Bijective Product Rule
6 5 Ranking Words
6 6 Ranking Permutations
6 7 Ranking Subsets
6 8 Ranking Anagrams
6 9 Ranking Integer Partitions
6 10 Ranking Set Partitions
6 11 Ranking Trees
6 12 The Successor Sum Rule
6 13 Successor Algorithms for Anagrams
6 14 The Successor Product Rule
6 15 Successor Algorithms for Set Partitions
6 16 Suc
詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。

規格說明
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理