*完成訂單後正常情形下約兩周可抵台。 *本賣場提供之資訊僅供參考,以到貨標的為正確資訊。 印行年月:202401*若逾兩年請先於私訊洽詢存貨情況,謝謝。 台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。 書名:最優因析設計理論 ISBN:9787030776686 出版社:科學 著編譯者:張潤楚 頁數:207 所在地:中國大陸 *此為代購商品 書號:1626614 可大量預訂,請先連絡。 內容簡介 試驗設計是近代科學發展的重要基礎理論之一。它研究不同條件下各種試驗的最優設計準則、構造和分析的理論與方法。為適應現代試驗的需要,作者於2006年開始建立了一個新的最優因子分析設計理論,包括最優性準則、最優設計構造,以及他們在各種不同設計類中的推廣。本書首先給出近代試驗設計,主要是多因子試驗設計的基本知識和數學基礎,接著從二水平對稱因子設計開始介紹了該理論的一些基本概念,包括AENP的提出、GMC準則的引進、GMC設計的構造等。書中對由AENP建立的GMC準則得到的設計與由WLP建立的MA型準則得到的兩類設計的優良性進行了詳細比較。利用AENP理論,還證明了過去已有的兩個準則MA和MEC(最大估計容量準則)得到的最優設計在只關心低階效應時是等價的。隨後的數章分別介紹了GMC理論在各類設計中的推廣和應用,包括分區組因析設計、裂區設計、混合水平因析設計、非正規因析設計、多水平因析設計、折衷設計、穩健參數設計,建立了各種情形的GMC準則。書中還給出了大量的最優設計表供實際應用。目錄 「統計與數據科學叢書」序Preface 1 Introduction 1 1 Factorial Designs and Factorial Effects 1 2 Fractional Factorial Designs 1 3 Optimality Criteria 1 3 1 Maximum Resolution Criterion 1 3 2 Minimum Aberration Criterion 1 3 3 Clear Effects Criterion 1 3 4 Maximum Estimation Capacity Criterion 1 4 Organization of the Book 2 General Minimum Lower-Order Confounding Criterion for 2n–m Designs 2 1 GMC Criterion 2 2 Relationship with MA Criterion 2 3 Relationship with CE Criterion 2 4 Relationship with MEC Criterion Appendix A: GMC 2n–m Designs with m ? Appendix B: GMC 2n–m Designs with 16, 32, and 64 Runs 3 General Minimum Lower-Order Confounding 2n–m Designs 3 1 Some Preparation 3 1 1 Several Useful Results 3 1 2 Structure of Resolution IV Design with N /4 + 1 ? n ? N /2 3 2 GMC 2n–m Designs with n ? 5N /16 + 1 3 2 1 Main Results and Examples 3 2 2 Proof of Theorem 3 10 3 3 GMC 2n–m Designs with 9N /32 + 1 ? n ? 5N /16 3 3 1 Main Results and Example 46 3 3 2 Outline of the Proof of Theorem 3 16 3 4 GMC 2n–m Designs with N /4 + 1 ? n ? 9N 3 4 1 Some Properties of MaxC2 2n–m Designs with n = N /4 + 1 3 4 2 GMC 2n–m Designs with N /4 + 1 3 4 3 Outline of the Proof of Theorem 3 23 3 5 When Do the MA and GMC Designs Differ? 4 General Minimum Lower-Order Confounding Blocked Designs 4 1 Two Kinds of Blocking Problems 4 2 GMC Criteria for Blocked Designs 4 3 Construction of B-GMC Designs 4 3 1 B-GMC 2n–m : 2r Designs with 5N /16 + 1 ? n ? N /2 4 3 2 B-GMC 2n–m : 2r Designs with n > N /2 4 3 3 Weak B-GMC 2n–m : 2r Designs 4 4 Construction of B1-GMC Designs 4 4 1 B1-GMC 2n–m : 2r Designs with n ? 5N /16 + 1 4 4 2 B1-GMC 2n–m : 2r Designs with 9N /32 + 1 ? n ? 5N /16 4 4 3 B1-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 9N /32 4 5 Construction of B2-GMC Designs 4 5 1 B2-GMC 2n–m : 2r Designs with n ? 5N /16 4 5 2 B2-GMC 2n–m : 2r Designs with N /4 + 1 ? n ? 5N 5 Factor Aliased and Blocked Factor Aliased Effect-Number Patterns 5 1 Factor Aliased Effect-Number Pattern of GMC Designs 5 1 1 Factor Aliased Effect-Number Pattern 5 1 2 The F-AENP of GMC Designs 5 1 3 Application of the F-AENP 5 2 Blocked Factor Aliased Effect-Number Pattern of B1-GMC Designs 5 2 1 Blocked Factor Aliased Effect-Number Pattern 5 2 2 The B-F-AENP of B1-GMC Designs 5 2 3 Applications of the B-F-AENP 99 6 General Minimum Lower-Order Confounding Split-plot Designs 6 1 Introduction 6 2 GMC Criterion for Split-plot Designs 6 2 1 Comparison with MA-MSA-FFSP Criterion 6 2 2 Comparison with Clear Effects Criterion 6 3 WP-GMC Split-plot Designs 6 3 1 WP-GMC Criterion for Split-plot Designs 6 3 2 Construction of WP-GMC Split-plot Designs 7 Partial Aliased Effect-Number Pattern and Compromise Designs 7 1 Introduction 7 2 Partial Aliased Effect-Number Pattern 7 3 Some General Results of Compromise Designs 7 4 Class One Compromise Designs 7 4 1 Largest Class One Clear Compromise Designs and Their Construction 7 4 2 Supremum f ?(q, n) and Construction of Largest Class One CCDs 7 4 3 Supremum n?(q, f ) and Construction of Largest Class One CCDs 7 4 4 Largest Class One Strongly Clear Compromise Designs 7 4 5 Class One General Optimal Compromise Designs 7 5 Discussion 8 General Minimum Lower-Order Confounding Criteria for Robust Parameter Designs 147 8 1 Introduction 8 2 Selection of Optimal Regular Robust Parameter Designs 8 3 An Algorithm for Searching Optimal Arrays 9 General Minimum Lower-Order Confounding Criterion for sn–m Designs 9 1 Introduction to sn–m Designs 9 2 GMC Criterion and Relationship with Other Criteria 9 3 GMC sn–m Designs Using Complementary Desi 詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。 |