氣體爆轟物理及其統一框架理論 (英文版) 姜宗林 滕宏輝 9787030752437 【台灣高等教育出版社】

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:科學
大陸簡體正版圖書,訂購後正常情形下約兩周可抵台。
NT$1,196
商品編號: 9787030752437
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202303*若逾兩年請先於客服中心或Line洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:氣體爆轟物理及其統一框架理論 (英文版)
ISBN:9787030752437
出版社:科學
著編譯者:姜宗林 滕宏輝
頁數:284
所在地:中國大陸 *此為代購商品
書號:1513316
可大量預訂,請先連絡。

內容簡介
《氣體爆轟物理及其統一框架理論(英文版)》是高溫氣體動力學國家重點實驗室激波與爆轟物理團隊多年研究成果的總結,主講氣體爆轟物理機制、傳播規律和理論模式。《氣體爆轟物理及其統一框架理論(英文版)》分7章:第1、2章介紹爆轟物理基本概念及其控制方程與計算方法;第3、4章回顧爆轟物理研究進展;第5、6章講述爆轟理論新進展,包括統一框架理論
和斜爆轟穩定性;第7章總結爆轟重要工程應用。爆轟是以超聲速傳播的極端燃燒現象,具有非定常三維結構、自持與自組織特徵、宏觀穩定的傳播狀態和平均恆定的胞格尺度,是氣體動力學與燃燒學融合的前沿學科。爆轟過程反應速率快、熱效率高,具有增壓燃燒特徵,在航空航天領域具有重大的應用潛力,一直是國際研究熱點。

目錄
Contents
1 Introduction 1
1 1 Origin and Cognition of Gaseous Detonation 1
1 2 Explosion, Deflagration and Detonation Waves 2
1 3 Methodology of Gaseous Detonation Research 4
1 3 1 Experimental Research 4
1 3 2 Numerical Research 7
1 3 3 Detonation Theory 9
1 4 Critical Physical Phenomena of Gaseous Detonation 11
1 4 1 Detonation Initiation 11
1 4 2 Wave Structure 12
1 4 3 Detonation Quenching 13
1 4 4 Wave Evolution 14
1 4 5 Stability of Detonation Wave 16
1 4 6 Gaseous Detonation Application 17
1 4 7 Motivation of This Book 19
References 20
2 Mathematical Equations and Computational Methods 25
2 1 Fundamental Theories of Gaseous Detonation 25
2 1 1 B asic Equations 26
2 1 2 Rayleigh Lines and Hugoniot Curves 27
2 1 3 Chapman-Jouguet Theory 30
2 1 4 CJ Detonation Speed 33
2 2 Chemical Reaction Models 34
2 2 1 One-Step Irreversible Heat Release Model 36
2 2 2 Two-Step Induction-Reaction Model 36
2 2 3 Detailed Chemical Reaction Model 38
2 3 Computational Fluid Dynamics Methods 40
2 3 1 Governing Equations 40
2 3 2 Computational Methods 43
2 3 3 Acceleration Technologies of Detonation Simulation 46
2 4 Some Typical Simulation Results 47
2 5 Concluding Remarks 54
References 55
3 Classical Theory of Detonation Initiation and Dynamic Parameters 59
3 1 CJ Theory and ZND Model 59
3 2 Deflagration-to-Detonation Transition 70
3 3 Direct Initiation Through Strong Shock 74
3 4 Detonation Initiation Theory 80
3 5 Important Dynamic Parameters 86
3 6 Relation Among Different Dynamic Parameters 90
References 94
4 Unstable Frontal Structures and Propagation Mechanism 95
4 1 Multiwave Detonation Fronts 95
4 2 Structure Evolution from Nonequilibrium State 100
4 3 Reflection and Diffraction of Cellular Detonations 109
4 4 Cylindrical Expansion Detonations 117
4 5 Strongly Unstable Detonations 123
References
5 Universal Framework for Gaseous Detonation Propagation
and Initiation 135
5 1 Introduction 136
5 2 Mechanisms Underlying Hot Spot Initiation 138
5 3 Chemical Reaction Zone and Its Evolution 146
5 4 Critical Initiation State and Its Characteristics 152
5 5 Equilibrium Propagation State and Its Averaged Features 157
5 5 1 Mechanisms Underlying Detonation Cell Generation 158
5 5 2 Supercritical Detonation 161
5 5 3 Subcritical Detonation 163
5 6 Averaged Cell Size and Half-Cell Law 166
5 6 1 Cylindrically Propagating Detonation 166
5 6 2 Detonation Cell Bifurcation Mechanism 168
5 6 3 Half-Cell Rule of Detonation Propagation 170
5 7 Detonation Cell Correlation with Ignition Delay Time 172
5 7 1 Ignition Delay Time 172
5 7 2 Cell Size Correlation 175
5 7 3 Detonation Reaction Modeling 177
5 8 Applications of the Universal Framework 180
5 9 Remarks on the Universal Framework 184
References 184
6 Structures and Instability of Oblique Detonations 187
6 1 Conservation Laws and Polar Analysis of Oblique Detonations 187
6 2 Wave Structure of Initiation Region 191
6 3 Multiwave Structures on an Unstable Surface 198
6 4 Oblique Detonation Waves in Nonideal Inflow Conditions 208
6 5 Effects of Rear Expansion Waves Derived from Finite-Length Wedges 214
6 6 Effects of Blunt Body on Initiation 220
6 7 Remarks on Oblique Detonations 225
References 226
7 Engineering Application of Gaseous Detonations 229
7 1 Thermal Analysis of Detonation-Based Combustion Process 229
7 1 1 Thermal Cycle Efficiency for Isobaric Cycles 230
7 1 2 Thermal Cycle Efficiency for Isochoric Cycle 233
7 1 3 Thermal Cycle Efficiency for Detonation Cycle 236
7 1 4 Comparison of Thermal Cycle Efficiency for Isochoric, Isobaric and Detonative Engines 240
7 2 Propulsion Technology Based on Detonation Combustion 243
7 2 1 Pulse Detonation Propulsion Concept 245
1 2 2 Oblique Detonation Propulsion Concept 247
7 2 3 Rotating Detonation Propulsion Concept 252
7 2 4 Key Technologies for Detonation Engines 256
7 3 Shock Tunnel Driven by Gaseous Detonations 258
7 3 1 Principles of Detonation-Driving Shock Tube/Tunnel 260
7 3 2 Development of Detonation-Driving Shock Tunnel 262
7 3 3 Transient Testing Techniques in High-Enthalpy Shock Tunnels 267
References 270

精彩書摘
Chapter 1 Introduction
Detonation is one of the most distinguished phenomena in gas dynamics, and it is characterized by nonlinearity, strong discontinuity and the tight coupling of chemical reaction and shock wave A detonation wave is a supersonic combustion wave across which the pressure and temperature of combustion products increase sharply Since the phenomenon of detonation was first observed scientifically over one hundred years ago, there have been numerous studies on detonations, from fundamental physics to application technologies, such as severe explosion prevention, supernovas in astrophysics, and for military purposes Detonation has been 「applied」 for military and mining and observed in nature but was not well understood In the last two decades, detonation applications in aerospace propulsion and high-enthalpy shock tunnels h

規格說明
大陸簡體正版圖書,訂購後正常情形下約兩周可抵台。
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理