機器學習及交通應用 (英文版) 陳淑燕 馬永鋒 喬鳳祥 9787576603620 【台灣高等教育出版社】

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:東南大學
大陸簡體正版圖書,訂購後正常情形下約兩周可抵台。
NT$432
商品編號: 9787576603620
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202212*若逾兩年請先於客服中心或Line洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:機器學習及交通應用 (英文版)
ISBN:9787576603620
出版社:東南大學
著編譯者:陳淑燕 馬永鋒 喬鳳祥
頁數:331
所在地:中國大陸 *此為代購商品
書號:1506688
可大量預訂,請先連絡。

內容簡介

The motivation for this textbook started with the successful practice of machine learning in intelligent transportation systems This book is intended to cover the basic concepts, typical machine learning algorithms and specific applications to transportation systems This textbook focuses on typical machine learning algorithms, including feature engineering, instance -based learning, decision tree learning, support vector machine, neural networks, ensemble learning, outlier mining, clustering, imbalanced data classification, model evaluation and model interpretation

目錄

Chapter 1 Introduction to Machine Learning
1 1 Definition of Machine Learning
1 2 History of Machine Learning
1 2 1 Artificial Intelligence, Machine Learning, and Deep Learning
1 2 2 Fields Related to Machine Learning
1 3 Workflow of Machine Learning
1 4 Types of Machine Learning Algorithms
1 4 1 Supervised Learning
1 4 2 Unsupervised Learning
1 4 3 Semi-supervised Learning
1 4 4 Reinforced Learning
1 5 Organization of the Textbook
1 6 Summary
Chapter 2 Feature Engineering
2 1 Data Normalization
2 1 1 Min-max Normalization
2 1 2 Standard Normalization
2 2 Data Discretization
2 2 1 Binning
2 2 2 Clustering Analysis
2 2 3 Entropy-based Discretization
2 2 4 Correlation Analysis
2 3 Feature Selection
2 3 1 Filter Feature Selection
2 3 2 Wrapper Feature Selection
2 3 3 Embedded Methods
2 4 Feature Extraction
2 4 1 Principal Components Analysis
2 4 2 Linear Discriminant Analysis
2 4 3 Autoencoder
2 5 Summary
Chapter 3 Instance-Based Learning
3 1 Overview of IBL
3 2 Components of KNN
3 2 1 Measure the Similarity between Instances
3 2 2 How to Choose K
3 2 3 Assign the Class Label
3 2 4 Time Complexity
3 3 Variants of KNN
3 3 1 Attribute Weighted KNN
3 3 2 Distance Weighted KNN
3 4 Strengths and Weaknesses of KNN
Chapter 4 Decision Tree Learning
4 1 Decision Tree Representation
4 1 1 Component of Decision Tree
4 1 2 How to use Decision Trees for Classification?
4 1 3 How to Generate Rules from Decision Trees?
4 1 4 Popular Algorithms to Generate Decision Trees
4 2 ID3 Algorithm
4 2 1 Select the best Attribute
4 2 2 Information Gain
4 2 3 Information Gain for Continuous-valued Attributes
4 2 4 Pseudoeode of ID3
4 3 C4 5 Algorithm
4 4 CART Algorithm
4 4 1 Gini Index
4 4 2 Binary Split Point for Muhivalued Attribute
4 4 3 Flowchart of Generating Tree
4 4 4 Develop Regression Trees by CART Algorithm
4 5 Overfitting and Tree pruning
4 5 1 Overfitting
4 5 2 Pruning Decision Trees
4 6 Pros and Cons of Decision Trees

Chapter 5 Support Vector Machines
Chapter 6 Neural Networks
Chapter 7 Ensemble Learning
Chapter 8 Outlier Mining
Chapter 9 Clustering
Chapter 10 Imbalanced Data Classification
Chapter 11 Model Evaluation
Chapter 12 Model Interpretation
Chapter 13 Application of Machine Learning in Transportation
Chapter 14 Course Projects

詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於客服中心或Line或本社留言板留言,我們即儘速上架。
規格說明
大陸簡體正版圖書,訂購後正常情形下約兩周可抵台。
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理