廢棄塑料在超臨界水中的資源化利用 Hui Jin(等著) 9787030754479 【台灣高等教育出版社】

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:科學
NT$1,641
商品編號:
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202306*若逾兩年請先於私訊洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:廢棄塑料在超臨界水中的資源化利用
ISBN:9787030754479
出版社:科學
著編譯者:Hui Jin(等著)
頁數:256
所在地:中國大陸 *此為代購商品
書號:1553326
可大量預訂,請先連絡。

內容簡介
《廢棄塑料在超臨界水中的資源化利用》共五章,首先闡述了廢棄塑料的危害、傳統處理方法的弊端、超臨界水處理技術的原理、超臨界水中廢棄塑料資源化利用技術的研究進展。其次介紹了材料種類及表徵、實驗方法及流程、產物的分析方法。隨後從超臨界水氣化、液化、固定二氧化碳、污染物共氣化、製備疏水材料等多個層面出發,對多種熱塑性和熱固性塑料的資源化利用技術進行剖析。*后對國內外的塑料處理政策進行總結,說明了該技術未來的研究方向和挑戰。

精彩書評
希望引入新技術來解決現有廢棄塑料處理問題,為相關領域的從業者和科研人員提供新的思路

目錄
Contents
List of figures ix
List of tables xix
Foreword xxi
Acknowledgement xxiii
Abbreviations xxv
1 Background introduction 1
1 1 Current situation and hazards of plastic waste 1
1 1 1 Pollution to the natural environment 2
1 1 2 A threat to human health 4
1 1 3 Cause a waste of resources 5
1 2 Traditional treatment methods6
1 2 1 Landfill treatment 7
1 2 2 Mechanical recovery 7
1 2 3 Incineration method 8
1 2 4 Thermal decomposition 8
1 3 Supercritical water technology 9
1 3 1 Supercritical water characteristics 9
1 3 2 Resource utilization of waste plastics in supercritical water 10
References 20
2 Analysis of types of plastics 29
2 1 Introduction to raw materials 29
2 1 1 Polycarbonate plastic 29
2 1 2 Polypropylene plastic 29
2 1 3 Acrylonitrile butadiene styrene plastic 29
2 1 4 Polyethylene terephthalate plastic 31
2 1 5 High-impaa polystyrene plastic 31
2 1 6 Polystyrene plastic 31
2 1 7 Polyethylene plastic 32
2 1 8 Urea—formaldehyde plastic 32
2 1 9 Circuit board 32
2 1 10 Lignite 33
2 1 11 Soda lignin 33
2 1 12 Artificial seawater 33
2 1 13 Formic add and hydrochloric acid solvent 33
2 2 Material characterization 34
2 2 1 Elemental and proximate analysis 34
2 2 2 Thermogravimetric analysis 34
2 3 Experimental bench 40
2 3 1 Quartz tube reactor 40
2 3 2 Batch kettle reactor 41
2 4 Product analysis 42
2 4 1 Gas phase products 42
2 4 2 Liquid phase products 43
2 4 3 Solid phase products 45
References 46
3 Resource utilization of thermoplastics in supercritical water 47
3 1 Gasification 47
3 1 1 Experimental investigation on gasification characteristics of polycarbonate microplastics in supercritical water 47
3 1 2 Experimental study on gasification performance of polypropylene plastics in supercritical water 58
3 1 3 Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene
microplastics in supercritical water 74
3 1 4 Experimental investigation on gasification characteristics of polyethylene terephthalate microplastics in supercritical water 85
3 1 5 Experimental investigation on gasification characteristics of high impact polystyrene plastics in supercritical water 99
3 2 Liquefaction 110
3 2 1 Hydrothermal liquefaction of polycarbonate plastics in sub-/supercritical water and an exploration of reaction pathways 110
3 3 Liquefaction reaction pathways exploration 123
3 3 1 Liquefaction kinetics of polycarbonate 126
3 4 Carbon dioxide fixation 141
3 4 1 In the supercritical water/C02 environment 141
3 4 2 In C02 environment 147
3 5 Coordinated treatment of pollutants 157
3 5 1 Hydrogen/methane production from supercritical water gasification of lignite coal with plastic waste blends 157
3 5 2 Cogasification of plastic wastes and soda lignin in supercritical water 169
3 6 Preparation of hydrophobic materials 182
3 6 1 Hydrophobic behavior 183
3 6 2 Microstructure 186
3 6 3 Functional groups 191
References 193
4 Resource utilization of thermosetting plastics in supercritical water 201
4 1 Hydrogen-rich syngas production by gasification of urea—formaldehyde
plastics in supercritical water 201
4 1 1 Effect of reaction temperature 201
4 1 2 Effect of reaction time 202
4 1 3 Effect of feedstock mass fraction 203
4 1 4 Effect of reaction pressure 204
4 1 5 Compared with the polystyrene plastics 205
4 1 6 Reaction analysis 207
4 1 7 Kinetic study 207
4 1 8 Conclusions 209
4 2 Resource utilization of circuit boards 210
4 2 1 Effect of reaction temperature 210
4 2 2 Effect of the reaction time 215
4 2 3 Effect of feedstock concentration 219
4 2 4 Effect of additive 220
4 2 5 Conclusion 222
References 223
5 Development prospects for resource utilization of waste plastics 227
5 1 Necessity of recycling waste plastics 227
5 1 1 Biodiversity conservation 228
5 1 2 Maintaining soil fertility 229
5 1 3 Saving resources 231
5 2 Comprehensive treatment countermeasures of waste plastics 232
5 2 1 Policy 232
5 2 2 General situation of domestic and foreign waste plastic treatment 237
5 2 3 Existing shortcomings 239
5 2 4 Improvement measures 240
5 3 Prospect of waste plastics treatment with supercritical water 242
5 3 1 Existing problems 243
5 3 2 Future development direction 244
References 245
Index 249
List of figures
Figure 1 1 Global annual production of plastic 1
Figure 1 2 The transfer of microplastic in different environments 3
Figure 1 3 The formation and influence of microplastic in the ocean 3
Figure 1 4 Main treatment methods for waste plastic 6
Figure 2 1 Chemical structure of(A)BPA;(B)DPC;(C)PC BPA,bisphenol A;30 DPC,diphenyl carbonate;PC,polycarbonate
Figure 2 2 Molecular structure of ABS plastic here ABS,acrylonitrile butadiene styrene 30
Figure 2 3 Chemical structure of polyethylene terephthalate(PET) 31
Figure 2 4 Molecular structure of HIPS plastic HIPS,high-impact polystyrene 31
Figure 2 5 Molecular structure of PS plastic PS,polymer synthesized 32
Figure 2 6 Chemical structu

規格說明
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理