*完成訂單後正常情形下約兩周可抵台。 *本賣場提供之資訊僅供參考,以到貨標的為正確資訊。 印行年月:202408*若逾兩年請先於私訊洽詢存貨情況,謝謝。 台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。 書名:融合數字電路與存內計算的高能效神經網絡處理器-英文版 ISBN:9787302656005 出版社:清華大學 著編譯者:嶽金山 頁數:118 所在地:中國大陸 *此為代購商品 書號:1674970 可大量預訂,請先連絡。 內容簡介 神經網路演算法在諸多領域具有廣泛應用,本書針對神經網路在低功耗智能設備上實際應用中遇到的關鍵挑戰,研究了融合數字電路與存內計算的高能效神經網路處理器。 本書創新成果包括:?提出了一種基於特定卷積核的數據復用架構,提升了能量效率;?針對不規則稀疏的額外硬體開銷,設計了頻域神經網路處理器,支持高效FFT計算和頻域二維數據復用;?提出了一種存內計算系統架構,支持分塊結構化稀疏、數據復用與ADC動態關斷;?針對現有存內計算晶元難以支持大規模網路的挑戰,提出了組相聯稀疏存內計算架構,支持乒乓權重更新,並進行了流片驗證。 本書展示了融合數字電路與存內計算的技術路線。證明充分利用數字電路與存內計算的優勢,結合器件、電路、架構和演算法應用等多層次聯合優化能夠實現更高能效。目錄 1 Introduction1 1 Research Background and Significance 1 1 1 Development Trends of Neural Network 1 1 2 Requirements of NN Processor 1 1 3 Energy-Efficient NN Processors 1 2 Summary of the Research Work 1 2 1 Overall Framework of the Research Work 1 2 2 Main Contributions of This Book 1 3 Overall Structure of This Book References 2 Basics and Research Status of Neural Network Processors 2 1 Basics of Neural Network Algorithms 2 2 Basics of Neural Network Processors 2 3 Research Status of Digital-Circuits-Based NN Processors 2 3 1 Data Reuse 2 3 2 Low-Bit Quantization 2 3 3 NN Model Compression and Sparsity 2 3 4 Summary of Digital-Circuits-Based NN Processors 2 4 Research Status of CIM NN Processors 2 4 1 CIM Principle 2 4 2 CIM Devices 2 4 3 CIM Circuits 2 4 4 CIM Macro 2 4 5 Summary of CIM NN Processors 2 5 Summary of This Chapter References 3 Energy-Efficient NN Processor by Optimizing Data Reuse for Specific Convolutional Kernels 3 1 Introduction 3 2 Previous Data Reuse Methods and the Constraints 3 3 The KOP3 Processor Optimized for Specific Convolutional Kernels 3 4 Processing Array Optimized for Specific Convolutional Kernels 3 5 Local Memory Cyclic Access Architecture and Scheduling Strategy 3 6 Module-Level Parallel Instruction Set and the Control Circuits 3 7 Experimental Results 3 8 Conclusion References 4 Optimized Neural Network Processor Based on Frequency-Domain Compression Algorithm 4 1 Introduction 4 2 The Limitations of Irregular Sparse Optimization and CirCNN Frequency-Domain Compression Algorithm 4 3 Frequency-Domain NN Processor STICKER-T 4 4 Global-Parallel Bit-Serial FFT Circuits 4 5 Frequency-Domain 2D Data-Reuse MAC Array 4 6 Small-Area Low-Power Block-Wise TRAM 4 7 Chip Measurement Results and Comparison 4 8 Summary of This Chapter References 5 Digital Circuits and CIM Integrated NN Processor 5 1 Introduction 5 2 The Advantage of CIM Over Pure Digital Circuits 5 3 Design Challenges for System-Level CIM Chips 5 4 Sparse CIM Processor STICKER-IM 5 5 Structural Block-Wise Weight Sparsity and Dynamic Activation Sparsity 5 6 Flexible Mapping and Scheduling and Intra/Inter-Macro Data Reuse 5 7 Energy-Efficient CIM Macro with Dynamic ADC Power-Off 5 8 Chip Measurement Results and Comparison 5 9 Summary of This Chapter References 6 A 「Digital+CIM」 Processor Supporting Large-Scale NN Models 6 1 Introduction 6 2 The Challenges of System-Level CIM Chips to Support Large-Scale NN Models 6 3 「Digital+CIM」 NN Processor STICKER-IM 6 4 Set-Associate Block-Wise Sparse Zero-Skipping Circuits 6 5 Ping-Pong CIM and Weight Update Architecture 6 6 Ping-Pong CIM Macro with Dynamic ADC Precision 6 7 Chip Measurement Results and Comparison 6 8 Summary of This Chapter References 7 Summary and Prospect 7 1 Summary of This Book 7 2 Prospect of This Book 詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。 |