面向高風險應用的機器學習 (影印版) (英文) 9787576612912 帕特里克.霍爾 詹姆士.柯蒂斯 帕蒂爾.帕迪

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:東南大學
NT$878
商品編號:
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202403*若逾兩年請先於私訊洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:面向高風險應用的機器學習 (影印版) (英文)
ISBN:9787576612912
出版社:東南大學
著編譯者:帕特里克.霍爾 詹姆士.柯蒂斯 帕蒂爾.帕迪
頁數:438
所在地:中國大陸 *此為代購商品
書號:1638102
可大量預訂,請先連絡。

【台灣高等教育出版社簡體書】 面向高風險應用的機器學習 (影印版) (英文) 787576612912 帕特里克.霍爾 詹姆士.柯蒂斯 帕蒂爾.帕迪

內容簡介

過去十年人們見證了人工智慧和機器學習(AI/ML)技術的廣泛應用。然而,由於在廣泛實施過程中缺乏監督,導致了一些本可以通過適當的風險管理來避免的事故和有害後果。在我們認識到AI/ML的真正好處之前,從業者必須了解如何降低其風險。 本書描述了負責任的AI方法,這是一種以風險管理、網路安全、數據隱私、應用社會科學方面的最佳實踐為基礎,用於改進AI/ML技術、業務流程、文化能力的綜合性框架。作者Patrick Hall、James Curtis、Parul Pandey為那些希望幫助組織、消費者和公眾改善實際AI/ML系統成果的數據科學家創作了這本指南。

目錄

Foreword
Preface
Part Ⅰ Theories and Practical Applications of AI Risk Management
1 Contemporary Machine Learning Risk Management
A Snapshot of the Legal and Regulatory Landscape
The Proposed EU AI Act
US Federal Laws and Regulations
State and Municipal Laws
Basic Product Liability
Federal Trade Commission Enforcement
Authoritative Best Practices
AI Incidents
Cultural Competencies for Machine Learning Risk Management
Organizational Accountability
Culture of Effective Challenge
Diverse and Experienced Teams
Drinking Our Own Champagne
Moving Fast and Breaking Things
Organizational Processes for Machine Learning Risk Management
Forecasting Failure Modes
Model Risk Management Processes
Beyond Model Risk Management
Case Study: The Rise and Fall of Zillow's iBuying ~
Fallout
Lessons Learned
Resources
2 Interpretable and Explainable Machine Learning
Important Ideas for Interpretability and Explainability
Explainable Models
Additive Models
Decision Trees
An Ecosystem of Explainable Machine Learning Models
Post Hoc Explanation
Feature Attribution and Importance
Surrogate Models
Plots of Model Performance
Cluster Profiling
Stubborn Difficulties of Post Hoc Explanation in Practice
Pairing Explainable Models and Post Hoc Explanation
Case Study: Graded by Algorithm
Resources
3 Debugging Machine Learning Systems for Safety and Performance
Training
Reproducibility
Data Quality
Model Specification for Real-World Outcomes
Model Debugging
Software Testing
Traditional Model Assessment
Common Machine Learning Bugs
Residual Analysis
Sensitivity Analysis
Benchmark Models
Remediation: Fixing Bugs
Deployment
Domain Safety
Model Monitoring
Case Study: Death by Autonomous Vehicle
Fallout
An Unprepared Legal System
Lessons Learned
Resources

4 Managing Bias in Machine Learning
5 Security for Machine Learning
Part Ⅱ Putting AI Risk Management into Action
6 Explainable Boosting Machines and Explaining XGBoost
7 Explaining a PyTorch Image Classifier
8 Selecting and Debugging XGBoost Models
9 Debugging a PyTorch Image Classifier
10 Testing and Remediating Bias with XGBoost
11 Red-Teaming XGBoost
Part Ⅲ Conclusion
12 How to Succeed in High-Risk Machine Learning

詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。
規格說明
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理