*完成訂單後正常情形下約兩周可抵台。 *本賣場提供之資訊僅供參考,以到貨標的為正確資訊。 印行年月:202402*若逾兩年請先於私訊洽詢存貨情況,謝謝。 台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。 書名:大型網絡和圖極限 ISBN:9787040612035 出版社:高等教育 著編譯者:拉茲洛.洛瓦茲 頁數:475 所在地:中國大陸 *此為代購商品 書號:1625009 可大量預訂,請先連絡。 內容簡介 世界上許多有趣的結構和現象可以用網路來描述。發展大型網路的數學理論是重要的挑戰。本書描述了最近十年出現的新方法——圖極限理論。該理論與研究大型網路的其他方法,如計算機科學中的「性質檢驗」和圖論中的正則劃分,有著豐富的聯繫。它在極值圖論中有一些應用,包括非常普遍的問題的確切公式和部分答案,例如圖極限理論中哪些問題是可判定的。它還與數學的其他領域(經典和非經典的,如概率論、測度論、張量代數和半正定優化)有著不易察覺的聯繫。目錄 PrefacePart 1 Large graphs: an informal introduction Chapter 1 Very large networks 1 1 Huge networks everywhere 1 2 What to ask about them 1 3 How to obtain information about them 1 4 How to model them 1 5 How to approximate them 1 6 How to run algorithms on them 1 7 Bounded degree graphs Chapter 2 Large graphs in mathematics and physics 2 1 Extremal graph theory 2 2 Statistical physics Part 2 The algebra of graph homomorphisms Chapter 3 Notation and terminology 3 1 Basic notation 3 2 Graph theory 3 3 Operations on graphs Chapter 4 Graph parameters and connection matrices 4 1 Graph parameters and graph properties 4 2 Connection matrices 4 3 Finite connection rank Chapter 5 Graph homomorphisms 5 1 Existence of homomorphisms 5 2 Homomorphism numbers 5 3 What hom functions can express 5 4 Homomorphism and isomorphism 5 5 Independence of homomorphism functions 5 6 Characterizing homomorphism numbers 5 7 The structure of the homomorphism set Chapter 6 Graph algebras and homomorphism functions 6 1 Algebras of quantum graphs 6 2 Reflection positivity 6 3 Contractors and connectors 6 4 Algebras for homomorphism functions 6 5 Computing parameters with finite connection rank 6 6 The polynomial method Part 3 Limits of dense graph sequences Chapter 7 Kernels and graphons 7 1 Kernels, graphons and stepfunctions 7 2 Generalizing homomorphisms 7 3 Weak isomorphism I 7 4 Sums and products 7 5 Kernel operators Chapter 8 The cut distance 8 1 The cut distance of graphs 8 2 Cut norm and cut distance of kernels 8 3 Weak and L1-topologies Chapter 9 Szemeredi partitions 9 1 Regularity Lemma for graphs 9 2 Regularity Lemma for kernels 9 3 Compactness of the graphon space 9 4 Fractional and integral overlays 9 5 Uniqueness of regularity partitions Chapter 10 Sampling 10 1 W-random graphs 10 2 Sample concentration 10 3 Estimating the distance by sampling 10 4 The distance of a sample from the original 10 5 Counting Lemma 10 6 Inverse Counting Lemma 10 7 Weak isomorphism II Chapter 11 Convergence of dense graph sequences 11 1 Sampling, homomorphism densities and cut distance 11 2 Random graphs as limit objects 11 3 The limit graphon 11 4 Proving convergence 11 5 Many disguises of graph limits 11 6 Convergence of spectra 11 7 Convergence in norm 11 8 First applications Chapter 12 Convergence from the right 12 1 Homomorphisms to the right and multicuts 12 2 The overlay functional 12 3 Right-convergent graphon sequences 12 4 Right-convergent graph sequences Chapter 13 On the structure of graphons 13 1 The general form of a graphon 13 2 Weak isomorphism III 13 3 Pure kernels 13 4 The topology of a graphon 13 5 Symmetries of graphons Chapter 14 The space of graphons 14 1 Norms defined by graphs 14 2 Other norms on the kernel space 14 3 Closures of graph properties 14 4 Graphon varieties 14 5 Random graphons 14 6 Exponential random graph models Chapter 15 Algorithms for large graphs and graphons 15 1 Parameter estimation 15 2 Distinguishing graph properties 15 3 Property testing 15 4 Computable structures Chapter 16 Extremal theory of dense graphs 16 1 Nonnegativity of quantum graphs and reflection positivity 16 2 Variational calculus of graphons 16 3 Densities of complete graphs 16 4 The classical theory of extremal graphs 16 5 Local vs global optima 16 6 Deciding inequalities between subgraph densities 16 7 Which graphs are extremal Chapter 17 Multigraphs and decorated graphs 17 1 Compact decorated graphs 1 詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。 |