人工智能驅動的機制設計-英文 沈蔚然 唐平中 9787302632832 【台灣高等教育出版社】

圖書均為代購,正常情形下,訂後約兩周可抵台。
物品所在地:中國大陸
原出版社:清華大學
NT$502
商品編號:
供貨狀況: 尚有庫存

此商品參與的優惠活動

加入最愛
商品介紹
*完成訂單後正常情形下約兩周可抵台
*本賣場提供之資訊僅供參考,以到貨標的為正確資訊。
印行年月:202310*若逾兩年請先於私訊洽詢存貨情況,謝謝。
台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。
書名:人工智能驅動的機制設計-英文
ISBN:9787302632832
出版社:清華大學
著編譯者:沈蔚然 唐平中
頁數:153
所在地:中國大陸 *此為代購商品
書號:1585132
可大量預訂,請先連絡。

內容簡介
《人工智慧驅動的機制設計(英文版)》結合人工智慧相關技術與機制設計理論,提出人工智慧驅動的機制設計框架,以提供一種替代方法來處理目前機制設計理論與實踐中的一些問題。該框架包含兩個互相交互的抽象模型:智能體模型和機制模型。結合人工智慧與機制設計,我們可以解決利用單一領域技術無法解決的問題。例如,我們可以極大縮小機制搜索空間,構建更現實的買家模型,以及更好地平衡各類目標。我們從多物品拍賣,動態拍賣,以及多目標拍賣三個場景入手,分析並說明該框架對理論與實踐均有幫助。

作者簡介
沈蔚然,2014年畢業於清華大學電子工程系,2019年于清華大學交叉信息研究院取得計算機科學與技術博士學位,2019年至2020年在卡內基梅隆大學任博士后研究員。研究方向主要為計算機與經濟學的交叉學科,包括博弈論、機制設計、多智能體系統和機器學習,博士期間在相關領域高水平國際會議上發表研究論文10餘篇。

目錄
Chapter 1 Introduction 1
1 1 Mechanism Design 2
1 1 1 Social Choice Function 2
1 1 2 Mechanism 2
1 1 3 Implementation 3
1 1 4 Revelation Principle 4
1 1 5 Efficient Mechanisms 5
1 2 Auctions 7
1 3 Why AI-Driven 11
1 3 1 Challenges in Auction Design 11
1 3 2 The AI-Driven Framework 12
1 4 Organization of the Book 13
References 14
Chapter 2 Multi-Dimensional Mechanism Design via AI-Driven Approaches 16
2 1 Recovering Optimal Mechanisms with Simple Neural Networks 16
2 1 1 Background 17
2 1 2 Setting 19
2 1 3 Revisiting the Na\"i ve Mechanism 21
2 1 4 Network Structure of MenuNet 24
2 1 5 Recovering Known Results 27
2 2 Discovering Unknown Optimal Mechanisms 30
2 2 1 Experiment Results 31
2 2 2 Theoretic Analysis and Formal Proofs 34
2 3 Performance 52
References 56
Chapter 3 Dynamic Mechanism Design via AI-Driven Approaches 59
3 1 Dynamic Cost-Per-Action Auctions with Ex-Post IR Guarantees 60
3 1 1 Background 60
3 1 2 Our Contributions 62
3 1 3 Related Works 63
3 1 4 Setting and Preliminaries 64
3 1 5 Mechanisms 70
3 1 6 Truthfulness and Implementation 74
3 1 7 Impossibility Result 80
3 2 Dynamic Reserve Pricing via Reinforcement Mechanism Design 80
3 2 1 Background 81
3 2 2 Settings and Preliminaries 86
3 2 3 Bidder Behavior Model 88
3 2 4 Dynamic Mechanism Design as Markov Decision Process 93
References 103
Chapter 4 Multi-Objective Mechanism Design via AI-Driven Approaches 109
4 1 Balancing Objectives through Approximation Analysis 110
4 1 1 Background 110
4 1 2 Settings and Preliminaries 113
4 1 3 Generalized Virtual-Efficient Mechanisms 114
4 1 4 Experiments 126
4 2 Balancing Objectives through Machine Learning 128
4 2 1 Background 129
4 2 2 Market Clearing Loss 132
4 2 3 Theoretical Guarantees 138
4 2 4 Empirical Evaluation 140
References 146
Chapter 5 Summary and Future Directions 151
References 153

前言/序言
In recent decades, the area of mechanism design has undergone remarkable advancements Among all its applications, online ad auctions stand out as one of the most important industries deeply rooted in mechanism design theory These auctions have become a major revenue source for Internet giants like Google, Amazon, Alibaba, and Facebook
Despite the huge success of mechanism design, a large gap persists between theory and practice Take, for instance, the design of auction rules While we have a clear understanding of revenue-maximizing mechanisms for simple scenarios, such as selling a single item, the problem becomes very challenging when multiple items are involved due to the vast design space Furthermore, mechanism design theory often operates under the assumption that all buyers are fully rational actors and have access to enough information and computational power to figure out the optimal strategy
This draws a sharp contrast to the diverse goals and irrational behaviors of real-world buyers Besides, online ad auction platforms possess a large amount of bidding data that the conventional mechanism design theory overlooks, data that could revolutionize the way of designing auctions optimized for real-world performance
This book emerges as a bridge over these gaps, uniting mechanism design theory with the powerful tools of artificial intelligence This fusion harnesses the flexibility of AI techniques to manage vast datasets while preserving the economic properties from theoretical analyses We aim to demonstrate the multifaceted applications of AI techniques in the domain of mechanism design We hope this perspective will offer both researchers and practitioners a fresh point of view for studying these intricate problems
Moreover, we explore how computer science and economics can mutually enrich each other, promoting interdisciplinary collaboration The union of these disciplines not only addresses the deficiencies in current theory but also opens up new possibilities for research and application


詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。
規格說明
運送方式
已加入購物車
已更新購物車
網路異常,請重新整理