*完成訂單後正常情形下約兩周可抵台。 *本賣場提供之資訊僅供參考,以到貨標的為正確資訊。 印行年月:202309*若逾兩年請先於私訊洽詢存貨情況,謝謝。 台灣(台北市)在地出版社,每筆交易均開具統一發票,祝您中獎最高1000萬元。 書名:稀疏統計學習-LASSO方法及其推廣 (英文) ISBN:9787523201329 出版社:世界圖書出版有限公司 著編譯者:特雷弗.哈斯蒂 羅伯特.蒂布希拉尼 頁數:351 所在地:中國大陸 *此為代購商品 書號:1583022 可大量預訂,請先連絡。 【台灣高等教育出版社簡體書】 稀疏統計學習-LASSO方法及其推廣 (英文) 787523201329 特雷弗.哈斯蒂 羅伯特.蒂布希拉尼 內容簡介 稀疏統計模型只具有少數非零參數或權重,經典地體現了化繁為簡的理念,因而廣泛應用於諸多領域。本書就稀疏性統計學習做出總結,以LASSO方法為中心,層層推進,逐漸囊括其他方法,深入探討諸多稀疏性問題的求解和應用;不僅包含大量的例子和清晰的圖表,還附有文獻註釋和課後練習,是深入學習統計學知識的參考。本書適合計算機科學、統計學和機器學習的學生和研究人員。目錄 Preface1 Introduction 2 The Lasso for Linear Models 2 1 Introduction 2 2 The Lasso Estimator 2 3 Cross-Validation and Inference 2 4 Computation of the Lasso Solution 2 4 1 Single Predictor: Soft Thresholding 2 4 2 Multiple Predictors: Cyclic Coordinate Descent 2 4 3 Soft-Thresholding and Orthogonal Bases 2 5 Degrees of Freedom 2 6 Uniqueness of the Lasso Solutions 2 7 A Glimpse at the Theory 2 8 The Nonnegative Garrote 2 9 lq Penalties and Bayes Estimates 2 10 Some Perspective Exercises 3 Generalized Linear Models 3 1 Introduction 3 2 Logistic Regression 3 2 1 Example: Document Classification 3 2 2 Algorithms 3 3 Multiclass Logistic Regression 3 3 1 Example: Handwritten Digits 3 3 2 Algorithms 3 3 3 Grouped-Lasso Multinomial 3 4 Log-Linear Models and the Poisson GLM 3 4 1 Example: Distribution Smoothing 3 5 Cox Proportional Hazards Models 3 5 1 Cross-Validation 3 5 2 Pre-Validation 3 6 Support Vector Machines 3 6 1 Logistic Regression with Separable Data 3 7 Computational Details and glmnet Bibliographic Notes Exercises 4 Generalizations of the Lasso Penalty 4 1 Introduction 4 2 The Elastic Net 4 3 The Group Lasso 4 3 1 Computation for the Group Lasso 4 3 2 Sparse Group Lasso 4 3 3 The Overlap Group Lasso 4 4 Sparse Additive Models and the Group Lasso 4 4 1 Additive Models and Backfitting 4 4 2 Sparse Additive Models and Backfitting 4 4 3 Approaches Using Optimization and the Group Lasso 4 4 4 Multiple Penalization for Sparse Additive Models 4 5 The Fused Lasso 4 5 1 Fitting the Fused Lasso 4 5 1 1 Reparametrization 4 5 1 2 A Path Algorithm 4 5 1 3 A Dual Path Algorithm 4 5 1 4 Dynamic Programming for the Fused Lasso 4 5 2 Trend Filtering 4 5 3 Nearly Isotonic Regression 4 6 Nonconvex Penalties Bibliographic Notes Exercises 5 Optimization Methods 5 1 Introduction 5 2 Convex Optimality Conditions 5 2 1 Optimality for Differentiable Problems 5 2 2 Nondifferentiable Functions and Subgradients 5 3 Gradient Descent 5 3 1 Unconstrained Gradient Descent 5 3 2 Projected Gradient Methods 5 3 3 Proximal Gradient Methods 5 3 4 Accelerated Gradient Methods 5 4 Coordinate Descent 5 4 1 Separability and Coordinate Descent 5 4 2 Linear Regression and the Lasso 5 4 3 Logistic Regression and Generalized Linear Models 5 5 A Simulation Study 5 6 Least Angle Regression 5 7 Alternating Direction Method of Multipliers 5 8 Minorization-Maximization Algorithms 5 9 Biconvexity and Alternating Minimization 5 10 Screening Rules Bibliographic Notes Appendix Exercises 6 Statistical Inference 6 1 The Bayesian Lasso 6 2 The Bootstrap 6 3 Post-Selection Inference for the Lasso 6 3 1 The Covariance Test 6 3 2 A General Scheme for Post-Selection Inference 6 3 2 1 Fixed-入 Inference for the Lasso 6 3 2 2 The Spacing Test for LAR 6 3 3 What Hypothesis Is Being Tested? 6 3 4 Back to Forward Stepwise Regression 6 4 Inference via a Debiased Lasso 6 5 Other Proposals for Post-Selection Inference Bibliographic Notes Exercises 7 Matrix Decompositions, Approximations, and Completion 7 1 Introduction 7 2 The Singular Value Decomposition 7 3 Missing Data and Matrix Completion 7 3 1 The Netflix Movie Challenge 7 3 2 Matrix Completion Using Nuclear Norm 7 3 3 Theoretical Results for Matrix Completion 7 3 4 Maximum Margin Factorization and Related Methods 7 4 Reduced-Rank Regression 7 5 A General Matrix Regression Framework 7 6 Penalized Matrix Decomposition 7 7 Additive Matrix Decomposition Bibliographic Notes Exercises 8 Sparse Multivariate Methods 8 1 Introduct 詳細資料或其他書籍請至台灣高等教育出版社查詢,查後請於PChome商店街私訊告知ISBN或書號,我們即儘速上架。 |